

Two routes to new anhydrous alkaline earth metal tetracyanidoborate salts

Antje Siegesmund, Gereon Behrendt, Martin Köckerling

Inorganic Solid State Chemistry, UNIVERSITY OF ROSTOCK, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany

Fig. 2: X-ray powder diffraction patterns of Sr[B(CN)₄]₂ obtained by different methods: crystallization preparation (CP), azeotropic distillation (az. d.), calculated pattern from XRD dataset solved in $Fm\bar{3}m$, and drying with TMSCN: powder and calculated pattern from crystal; $\lambda = 154.06$ pm (Cu).

Table 1: Crystallographic data of Sr[B(CN)₄]₂, λ = 71.073 pm (Mo).

Crystal system	Space group	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	α (°)	β (°)	γ (°)	<i>V</i> (Å ³)
Cubic	<i>Fm</i> 3̄ <i>m</i> (no. 225)	12.487(2)	12.487(2)	12.487(2)	90.00	90.00	90.00	1947.0(9)
Temperature 123 K	Crystal size (mm) $0.30 \times 0.30 \times 0.30$	<i>Z</i> 1	2θ range 5.42 – 65.3 °	R _{int} 0.049	<i>R</i> 1 0.025	w <i>R</i> 2 0.11	Goodness of fit 0.88	

Fig. 1: View of the cubic structure of $Sr[B(CN)_4]_2$ along the *c* axis.

Tetracyanidoborate salts

compound class intensely investigated since 2001¹

- [B(CN)₄]⁻ anion relatively large, chemically robust, and weakly coordinating: is able to stabilise unusual cations, can be used for ionic liquids
- large electrochemical windows and low viscosities: potential applications in solar cells,² as components of membranes,³ and battery electrolytes⁴
- anhydrous alkaline earth metal tetracyanidoborates might possess significantly large voids potentially suitable for applications, e.g. gas absorption
- various $[E(H_2O)_X][B(CN)_4]_2$ known, first anhydrous $E[B(CN)_4]_2$ (E = Mg, Ca) characterised by infrared spectroscopy only,⁵ since crystalline material difficult to obtain
- Eu^{2+/3+} doped tetracyanidoborates currently tested for photoluminescence

1. Drying agent trimethylsilyl cyanide

• 4 $(CH_3)_3SiCN + [Sr(H_2O)_2][B(CN)_4]_2 \longrightarrow Sr[B(CN)_4]_2 + 2 (CH_3)_3Si-O-Si(CH_3)_3 + 4 HCN$

• Sr[B(CN)₄]₂ has CaF₂ structure type and ${\sim}12$ times the volume of CaF₂ (Fig. 1, Table 1)

 similar experiments with [Mg(H₂O)₂][B(CN)₄]₂ and [Ca(H₂O)₂][B(CN)₄]₂ often polymerise out, no crystalline products

2. Azeotropic distillation with pyridine

• $[Sr(H_2O)_2][B(CN)_4]_2$: pyridine as entraining agent (water – pyridine azeotrope: $T_b = 92.6^{\circ}C$) gives the same anhydrous product as above (Figs. 1, 2, Table 1)

• $[Mg(H_2O)_2][B(CN)_4]_2 \xrightarrow{azeotr. dist.} [Mg(H_2O)_4(Py)_2][B(CN)_4]_2 \cdot H_2O$ (Figs. 3, 4, Table 2) pyridine

Table 2: Crystallographic data of $[Mg(H_2O)_4(Py)_2][B(CN)_4]_2 \cdot H_2O$, $\lambda = 71.073 \text{ pm}$ (Mo).											
Crystal system Monoclinic	Space group <i>C</i> 2/ <i>c</i> (no. 15)	<i>a</i> (Å) 18.143(4)	b (Å) 8.969(2)	<i>c</i> (Å) 17.332(3)	α (°) 90.00	β (°) 95.32(1)	γ (°) 90.00	<i>V</i> (Å ³) 2808.0(17)			
Temperature 123 K	Crystal size (µr 10×30×40	n) <i>Z</i> 8	2θ range 2.26 – 21.1 °	R _{int} 0.202	<i>R</i> ₁ 0.061	w <i>R</i> 2 0.17	Goodn 0.90	ess of fit			

Fig. 3: Infrared and Raman spectrum of $[Mg(H_2O)_4(Py)_2][B(CN)_4]_2 \cdot H_2O$ obtained through a crystallization preparation (CP) and by azeotropic distillation (az. d.), respectively.

Fig. 4: Representation of the structure of $[Mg(H_2O)_4(Py)_2][B(CN)_4]_2 \cdot H_2O$ along the direction $[\overline{110}]$, octahedral coordination of Mg sites and tetrahedral $[B(CN)_4]^-$ anions highlighted with polyhedra, hydrogen atoms and additional water molecules omitted for clarity.

E. Bernhardt, M. Finze, H. Willner, *Z. Anorg. Allg. Chem.*, 2003, **629**, 1229 – 1234.
D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, M. Grätzel, *J. Am. Chem. Soc.*, 2006, **128**, 7732 – 7733.
P. Izák, M. Köckerling, U. Kragl, *Green Chem.*, 2006, **8**, 947 – 948.
J.-D. Decoppet, T. Moehl, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, S. M. Zakeeruddin, H.-W. Schmidt, M. Grätzel, *J. Mater. Chem. A*, 2014, **2**, 15972 – 15977.
C. Nitschke, M. Köckerling, E. Bernhardt, T. Küppers, H. Willner, *Dalton Trans.*, 2014, **43**, 7128 – 7138.