

Traditio et Innovatio

The borat-based weakly coordinating anion

In this study we report three new [B(CN)] salts

 $[B(CN)_4]^{T}$ shows exceptional characteritics such as low nucleophilicity, chemical inertness, and high solubility resulting in applications in organic or inorganic chemistry.^[1]

$$M = Al^{3+}, Ga^{3+}, In^{3+}$$

$$M(OH)_3 + 3 H[B(CN)_4] + 3 H_2O \xrightarrow{H_2O, rt} [M(H_2O)_6][B(CN)_4]_3$$

which where synthesized using either acid-base reactions of freshly precipitated metalhydroxides and the tetracyandioborate acid.^[2] All prepared salts are easily synthesized in bulk and finally stable under air and sunlight.

analysis vibration spectroscopy X-RAY crystallography The IR spectrum of $[Al(H_2O)_6][B(CN)_4]_3$ shows as aspected one band at 2354 The salt $[Al(H_2O)_6][B(CN)_4]_3$ crystallizes in the trigonal space group R3c with cm^{-1} , which originates from the $v_6(CN)$ strechting mode. Because of the higher 3 formular units in the unit cell. charge of the Al³⁺ cation. This frequency is found at much higher wavenumber than for example K[B(CN)₄] (2234cm⁻¹).^[3] Furthermore the shift in this high wavenumber correlats nicely with an small CN-distance (d = 1, 140(1) Å). Peaks around the wavenumber 3150 cm^{-1} indicate weak hydrogen bonds. B3LYP/6-31G* С ┥ experimental $v_6(CN)$ 0,8 0,6 [%]

Figure 1:

IR spectrum and calculated spektrum (DFT-calculation curve for B3LYP/6-31G*) for $[Al(H_2O)_6][B(CN)_4]_{3.}$

	υ ₆ (CN) [cm ⁻¹]	d(CN) [Å]	Table 1: $v_6(CN)$ strechting modeand CN distance.
$[Al(H_2O)_6][B(CN)_4]_3$	2354	1,140 (1)	
$[Ga(H_2O)_6][B(CN)_4]_3$	2364	1,141 (1)	
$[In(H_2O)_6][B(CN)_4]_3$	2385	1,145 (2)	

Figure 2:

View of the structure of $[Al(H_2O)_6][B(CN)_4]_3$ along the crystallographic *a* direction, showing the stacking of anion and cation layers.

The structure consists of diskret cations and anions units.

The Al^{3+} cation is bonded to (water) O atoms forming an octahedral coordination environment with n Al - O distance of 1.878(2)Å.

property

All compounds are soluble in polar solvents. They also show good solubilities in unpolar solvents such as

Table 2: Solubilities in mg/100mL.								
	water	ethanol	acetonitrile	acetone	TH			
$[Al(H_2O)_6][B(CN)_4]_3$	5.4	1.1	7.1	3.9	12.			

 $\begin{array}{|c|c|c|c|}\hline \mathbf{F} & RAMAN- and IR-results show, that \\\hline 6 & watermolecules can be partially replaced \\by acetonotrile molecules. \end{array}$

makes the substances suitable starting	$[Ga(H_2O)_6][B(CN)_4]_3$	4.0	1.3	8.0	3.1	8.6
makes the substances suitable starting		ΛΕ	1 (4.2	4.0	10 (
materials for organometallic chemistry.	$[In(H_2O)_6][B(CN)_4]_3$	4.5	1.6	4.3	4.8	10.6

reaction mechanism for solventless metal tetracyanidoborate salts

I.) $[M(H_2O)_6][B(CN)_4]_3 + 12 (CH_3)_3 SiCN \xrightarrow{CH_3CN, reflux} M[B(CN)_4]_3 + 6 [(CH_3)_3 Si]_2 O + 2 HCN$

II.) $BF_3 \cdot Et_2O + 4 (CH_3)_3 SiCN \xrightarrow{20 \circ C} [(CH_3)_3 Si][B(CN)_4] + 3 (CH_3)_3 SiF + Et_2O$

 $3 [(CH_3)_3Si][B(CN)_4] + MF_3 \xrightarrow{\text{THF, reflux}} M[B(CN)_4]_3 + 3 [(CH_3)_3Si]F$

In corresponding anhydrous compounds cavities may arise, which could be used for gasabsorbtion and for catalytic purposes.

references

[1] a.) C. Nitschke, M. Köckerling, Inorg. Chem. 2011, 50, 4313–4321. b.) G. Kopplin, A. Bernsdorf, M. Köckerling, Eur. J. Inorg. Chem. 2014, 319-325. c.) F. Falk, L. Hackbarth, S. Lochbrunner, H. Marciniak, M. Köckerling, Eur. J. Inorg. Chem. 2016, 469-476. c.) M. Marszalek, Z. Fei, D.-R. Zhu, R. Scopelliti, P. J. Dyson, S. M. Zakeeruddin, M. Grätzel, Inorg. Chem. 2011, 50, 11561–11567.

[2] a.) T. Küppers, E. Bernhardt, C. W. Lehmann and H. Willner, Z. Anorg. Allg. Chem., 2007, 633, 1666–1672. b.) E. Bernhardt, M. Finze and H. Willner, Z. Anorg. Allg. Chem., 2003, 629, 1229–1234.

[3] E. Bernhardt, G. Henkel, H. Willner, Z. Anorg. Allg. Chem., 2000, 626, 560.

[4] Gaussian 03, Revision B.03, M. J. Frisch et al, Gaussian, Inc., Pittsburgh PA, 2003.

[5] G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.

Department of Chemistry | Solid State Chemistry, University of Rostock, Albert-Einstein-Str. 3a | 18059 Rostock, Germany