

Mathematisch-Naturwissenschaftliche Fakultät

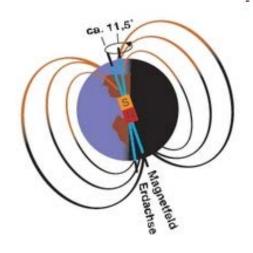
Institut für Chemie Abteilung Anorganische Festkörperchemie

Prof. Dr. Martin Köckerling

Vorlesung

Anorganische Chemie VI – Materialdesign

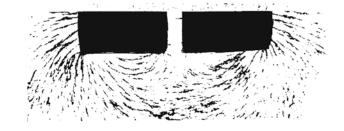
Heute: Magnetismus


Gliederung

- Magnetismus
- Elektromagnetismus
- Definitionen
- Arten Magnetismus
- Ferrite
- Dauermagneten
- Magnetschwebebahn

Magnetismus

- Magnetismus der, die Lehre vom Magnetfeld und dem Verhalten der Stoffe und Körper in ihm
- Auffälligste Merkmale: Kräfte und Drehmomente
- Entspricht Ferromagnetismus (Eisen)
- Typisches Beispiel: Kompass
- 1778 Brugmans: Bestimmte Materialien werden vom Magnetfeld abgestoßen
- Einteilung in diamagnetisch und paramagnetisch bereits 1845 durch Faraday



Elektromagnetismus

- Ursache magnetischen
 Erscheinungen: Bewegte elektrische Ladungen/Felder
- Zeitlich ändernder elektrischer Strom: elektrische Spannung oder Strom im Leiter
- Auch zeitlich konstantes Magnetfeld induziert eine Spannung
- Ausgeübte Kraft ist die Lorentz-Kraft

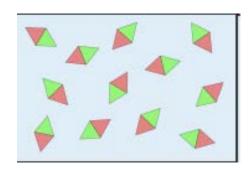
Prof. Dr. Martin Köckerling

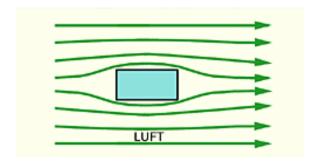
Definitionen

- Magnetisches Moment Maß für die Stärke eines magnetischen Dipols
- Magnetische Permeabilität Durchlässigkeit von Materie für magnetische Felder
- Magnetische Suszeptibilität Magnetisierbarkeit von Materie in einem externen Magnetfeld

Magnetisches Moment μ einiger Elementarteilchen

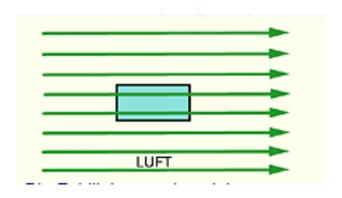
Elementarteilchen	Bezeichnung	μ/(JT ⁻¹)		
Elektron	μ _e	$-9,284.763.77(23) \cdot 10^{-24}$		
Myon	μ_{μ}	$-4,490.477.86(16) \cdot 10^{-26}$		
Proton	μρ	$1,410.606.662(37) \cdot 10^{-26}$		
Neutron	μ_{N}	$-0,966.236.41(23) \cdot 10^{-26}$		

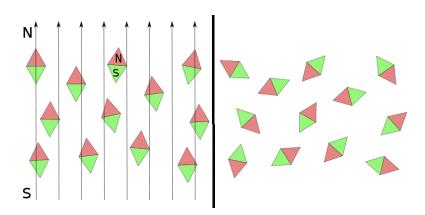

Arten von Magnetismus


- Diamagnetismus
- Paramagnetismus
- Ferromagnetismus
- Ferrimagnetismus
- Antiferromagnetismus

Diamagnetismus

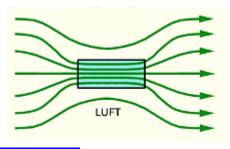
- Diamagnete werden durch ein externes Magnetfeld so magnetisiert, dass sich das Magnetfeld in ihrem Innern abschwächt und diamagnetische Materialien dement-sprechend die Tendenz haben, aus einem inhomogenen Magnetfeld heraus zuwandern.
- Eigenschaften: keine magnetische Ordnung, magnetische Suszeptibilität < 0
- Beispiele: Kohlenstoff, Bismut, Supraleiter

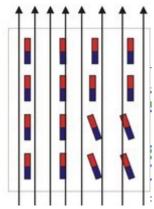

Diamagnetismus


- Universelle Eigenschaft der Materie, da immer gepaarte Elektronen vorhanden sind
- → Resultat ist eine schwache Abstoßung von einem äußeren Magnetfeld durch Abnahme der Feldliniendichte im Inneren der Probe
- → Spin des Elektrons besitzt magnetisches Moment

Paramagnetismus

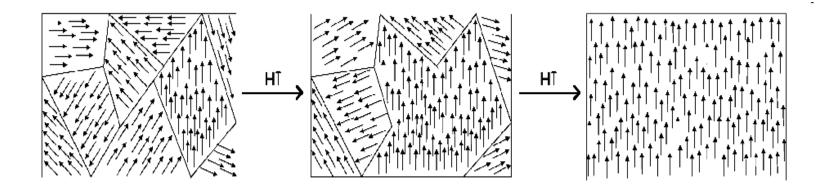
- magnetisch, so lange Magnet in der Nähe
- Magnetisierung im externen Magnetfeld
- Magnetische Permeabilität >1, magnetische Suszeptibilität >0
- Beispiele: O₂





Ferromagnetismus

- Magnetisierung im externen Magnetfeld
- Tendenziell ins Magnetfeld gezogen
- Erhaltung magnetisches Moment bis zur Curie-Temperatur
- Teil der Magnetisierung bleibt nach Abschaltung des externen Magnetfeldes erhalten im Unterschied zum Paramagnetismus
- Magnetische Permeabilität >>1
- Merkmal: Weiss-Bezirke
- Beispiele: Eisen, Kobalt, Nickel



Weiss-Bezirk

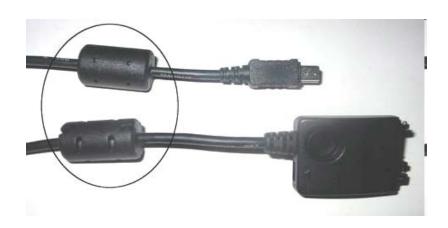
Kleine Bereiche gleicher Spinausrichtung im Kristall

Antiferromagnetismus

- magnetisches Moment innerhalb Weiss-Bezirk abwechselnd antiparallel und parallel zueinander
- Summe aller magnetischen Momente = 0 → nicht nach Außen magnetisch
- Ausbildung eines magnetischen Moments im externen Magnetfeld
- Erhaltung magnetisches Moment bis zur Néel-Temperatur
- Beispiel: Ferrite, z.B. Hämatit, Fe₂O₃

Ferrimagnetismus

- Unterteilt in Weiss-Bezirke
- Bezirke untereinander verschiedene Winkel zu einander → Magnetisierung ≠ 0
- Oberhalb Néel-Temperatur paramagnetisch
- Beispiele: Mn, Cr, MnO, MnS, FeO


Ferrite

- Ungesättigt: elektrisch schlecht oder nicht leitende keramische Materialien
- Gesättigt: sehr guter magnetischer Fluss
- Eisenoxid Hämatit (Fe₂O₃), seltener aus Magnetit (Fe₃O₄)
- hohe magnetische Permeabilität → kleiner magnetischer Widerstand

Weichmagnetische Ferrite

- Zusatz von Nickel, Zink oder Mangan-Verbindungen
- Ferritkerne in Spulen, Drosseln und Transformatoren
- Magnetköpfe in Tonbandgeräten (Löschkopf), Videorecordern, Computer-Festplatten und Diskettenlaufwerken

Prof. Dr. Martin Köckerling

Hartmagnetische Ferrite

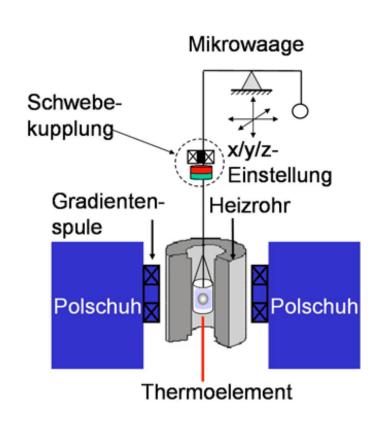
- zusätzlich zum Eisenoxid Barium und Strontium
- Magnetisierbare Beschichtung auf Ton- und Videobändern (hier nicht keramisch gebunden), Dauermagnete aller Art, z. B. Magnetsegmente in permanentmagnetisch erregten Elektromotoren, in Lautsprechern

Vorlesung AC-VI – Materialdesign

Prof. Dr. Martin Köckerling


Dauermagnet

- Legierung aus Eisen, Nickel mit Zusätzen von Kobalt, Mangen, Kupfer
- Herstellung über Sinterverfahren
- besitzen an Oberfläche je einen oder mehrere Nord- und Südpol(e)
- Beispiele: Kompassnadeln, Festplattenlaufwerke, Sensoren



Messung magnetischer Suszeptibilitäten

- Faraday Waage:
- Messung der Kraft, die auf Probe im inhomogenen Magnetfeld wirkt
- Messen des Gewichts der Probe mit und ohne Feld
- Wenige Milligramm Probe
- Spezifische χ zugänglich

Kraftwirkung auf Probe:

$$f = m \cdot \chi \cdot H_0 \cdot \left(\frac{\partial H}{\partial x} \right)$$

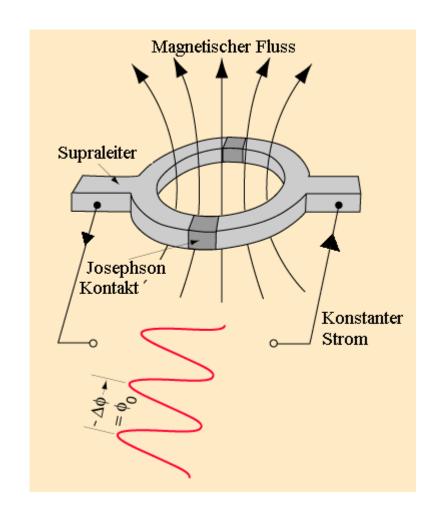
- Vereinfachung durch Messen eines Standards bekannter Suszeptibilität (Hg[Co(SCN)₄])
- Gleiche Magnetfeldstärke und Feldgradient beim Messen der Probe und des Standards:

$$\chi_u = \frac{f_u m_s \chi_s}{f_s M_u}$$

 aus χ kann die Anzahl der ungepaarten Elektronen pro Molekül/Ion berechnet werden (nach Abzug diamagnetischer Beiträge)

- Gouy-Methode:
- Sehr ähnlich der Faraday-Methode (gleicher Aufbau)
- Aber homogenes Magnetfeld
- → Probe darf sich nur zum Teil im Magnetfeld befinden → Inhomogenität

Nachteile:


- -Größere Menge Probe (ca. 1 g)
- Volumensuszeptibilität wird erhalten
- Umrechnung in χ_{spez} auf Grund der oftmals schwer zu bestimmenden Dichte (Hohlräume) kompliziert

Squid-Methode:

SQUID ist die Abkürzung für englisch
 superconducting quantum interference device
 (dt. supraleitende Quanteninterferenzeinheit).

Ein SQUID ist ein Sensor zur sehr präzisen Messung extrem geringer Magnetfeldänderungen.

Magnetic Ordering in Solids

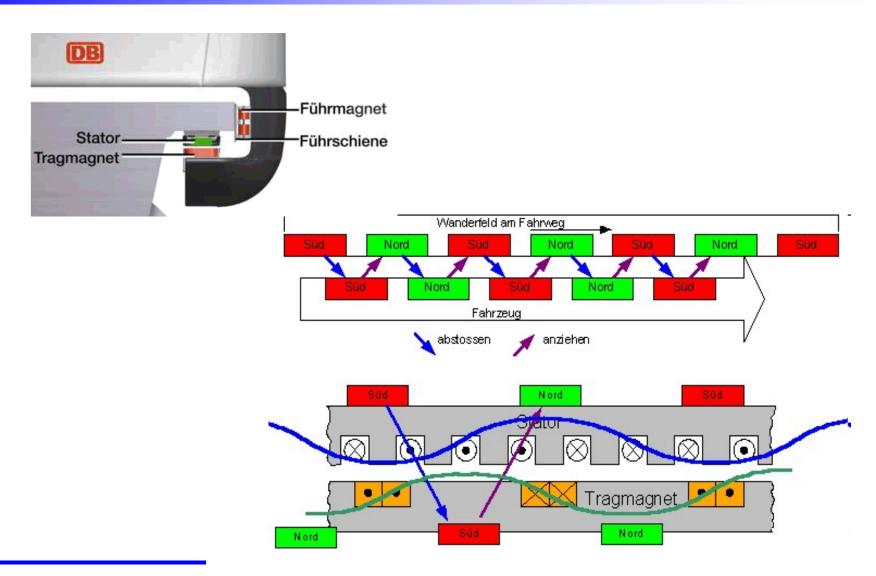
- Diamagnetism: No unpaired e⁻
- Paramagnetism: Unpaired e-, disordered and fluctuating
- Ferromagnetism: All unpaired e-spins aligned parallel
- Antiferromagnetism: Unpaired e- aligned antiparallel
- Ferrimagnetism: Unpaired e-aligned antiparallel but don't fully cancel out

Vergleich der magnetischen Eigenschaften

Eigenschaft	Wirkung eines äußeren Feldes	χs bei 20 <u>°</u> C (cgs- Einheit) g	Temperatur- abhängigkeit von χ	Feldabhängigkeit von χ
Diamagnetismus	schwache Abstoßung	-6 - 1*10	keine	keine
Paramagnetismus	mäßig starke Anziehung	-4 1*10	1/T	keine
Ferromagnetismus	sehr starke Anziehung	-2 1*10	komplex	hängt ab
Antiferro- magnetismus	schwache Anziehung	-7 1*10 bis 1*10	komplex	hängt ab

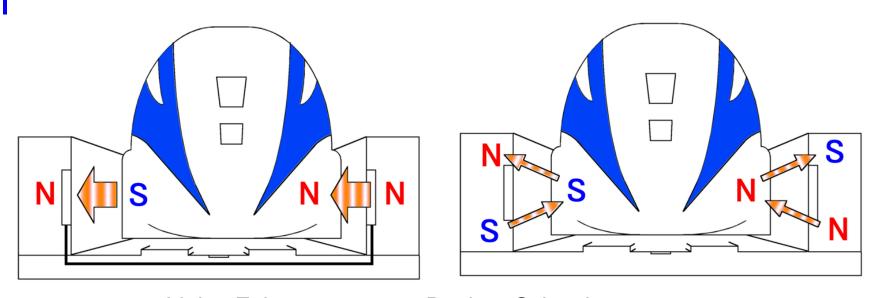
Magnetschwebebahnen

- Nutzung von Magnetfeldern zur Bewegung bei sparsamen Energieverbrauch
- freies "Schweben" und gleichzeitige Fahrbewegung mit statischen und geregelten Magnetfeldern erst möglich, seit hinreichend schnelle und effiziente dynamische Regelungen existieren
- Unterscheidung elektromagnetisch schwebenden und elektrodynamischen schwebende Bahnen

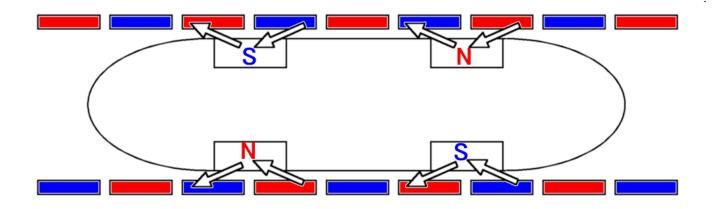


Elektromagnetisch schwebende Bahnen

- Anziehungskräfte von Elektro- oder Permanentmagneten bewirken das Tragen und Führen des Fahrzeugs
- Beispiele: Transrapid



Elektrodynamischen schwebende Bahnen


- während schneller Fahrt durch magnetische Wechselfelder in Spulen innerhalb des Fahrzeugs Ströme induziert, Erzeugung Gegenfeld für Tragfunktion
- Maglev

Links: Führungssystem; Rechts: Schwebesystem

Maglev - Shanghai / China

